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Abstract. By using the topological degree we introduce the concept of “exceptional family of
elements” specifically for continuous functions. This has important consequences pertaining to the
solvability of the explicit, the implicit and the general order complementarity problems. In this way
a new direction for research in the complementarity theory is now opened.
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1. Introduction

Complementarity theory is a new and interesting domain of applied mathematics. It
is a link between such concepts as fixed point theory topological degree, variational
inequalities, linear and nonlinear analysis and domains of applied mathematics like
optimization, game theory, economics, classical mechanics and stochastic optimal
control etc. [1], [10], [19].

It is associated with the idea of “equilibrium” as studied in physics, engineering
and even economics [6–13]. Its implication to the study of global optimization is
also important [21].

The relations between the complementarity theory and the global optimization
is also an important aspect.

Several kinds of complementarity problems have been defined and are being
studied. There are explicit and implicit complementarity problems, each of which
can be considered with respect to a dual system or with respect to an ordering [6],
[8], [9], [11], [12].

In this paper we introduce the concept of exceptional family of elements for a
function with respect to a convex cone, and we establish some relations between
this notion, the topological degree and the complementarity problem. The main
results are several alternative theorems with applications to the solvability of the
most important kind of general nonlinear complementarity problems.

It is remarkable that our existence results for complementarity problems are
based only on the concepts of exceptional family of elements and continuity.
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The fundamental idea of this paper is the relation between the concept of
exceptional family of elements, the topological degree and the complementarity
problem. The topological degree was also used by other authors in the study of com-
plementarity problems [3–5]. In this paper we consider nonlinear complementarity
problems only.

2. Preliminaries

The preliminaries are presented in a general Banach or Hilbert space, since the
same notions can be used to generalize our results to an infinite dimensional
Hilbert space.

Let (E; k k) be a Banach space and let E� be the topological dual of E. We
denote by hE;E�i a duality between E and E�. We say that K � E is a closed
convex cone if and only if K is a closed subset and the following properties are
satisfied:

(1): K + K � K
(2): �K � K for all � 2 R+;

(3): K \ (�K) = f0g:

Whenever a closed convex cone K � E is defined, we have an ordering on E

defined by x � y, if and only if y � x 2 K. By definition the dual of K is
K� = fy 2 E�jhx; yi � 0 for all x 2 Kg. Note that K� is also a closed convex
cone. We say that the ordered Banacgh space (E; k k;K) is a vector lattice, if
and only if, for every pair (x; y) of elements of E, the supremum x _ y and the
infimum x ^ y exist in E. If (E; k k;K) is a vector lattice we define for every
x 2 E; x+ = x _ 0; x� = (�x) _ 0, and jxj = x+ + x�. Other properties of
x+; x� and jxj are presented and proved in [22]. Suppose now that (E; k k) is a
Hilbert space denoted by (H; h; i) where h; i is the inner product defined on H .

We say that an ordered Hilbert space (H; h; i;K) is a Hilbert lattice if and only
if:

(h1) H is a vector lattice;

(h2) kjxjk = kxk for every x 2 H

(h3) 0 � x � y implies kxk � kyk for every x; y 2 K:

If D � H is a closed convex set we denote the projection onto D by PD that is,
for every x 2 H;PD(x) is the unique element satisfying,

kx� PD(x)k = min
y2D

kx� yk:

If K � H is a closed convex cone we denote the projection onto K by PK.
The polar cone of K is by definition K0 = fx 2 Hjhx; yi � 0 for all y 2 Kg;

polarity is studied in the book [22]. If K and Q are two closed convex cones in
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H then K and Q are mutually polar if K = Q0. We recall the following classical
result.

THEOREM 1 ([Moreau] [18]). If K and Q are two mutually polar convex cones
in a Hilbert space H and x; y; z 2 H, then the following statements are equivalent:

(i) z = x+ y; x 2 K; y 2 Q and hx; yi = 0;

(ii) x = PK(z) and y = PQ(z):

The operatorPK has several special properties and the following notion was defined
and studied in [13].

We say that K is an isotone projection cone if and only if, for every x; y 2

H;x � y implies thatPK(x) � PK(y). The following result is proved in [13].

THEOREM 2. If (H; h; i;K) is a Hilbert lattice then K is an isotone projection
cone and moreover, PK(x) = x+ for every x 2 H.

This result justifies some of our notations and also, by this result we have that for
the Euclidean space (Rn; h; i); PRn

+
(x) = x+ for every x 2 Rn.

The principal aim of our paper is the study of the following three kinds of
complementarity problems.

Let hE;E�i be a duality of Banach spaces and let K � E be a closed convex
cone. Given the mappings f : K ! E�; g : D ! E, where D � E is a subset, we
consider the following complementarity problems:

ECP (f;K) :
�

find x0 2 K such that;
f(x0) 2 K� and hx0; f(x0)i = 0

ICP (f; g;D;K) :

8<
:

find x0 2 D such that;
g(x0) 2 K; f(x0) 2 K� and
hg(x0); f(x0)i = 0

When D = K we denote the last problem by ICP (f; g;K). If E is a vector lattice
with respect to the ordering defined by K and f1; f2; . . . fn are mappings from E

into E we consider the problem

GOCP (ffig
n

i=1;K) :
�

find x0 2 K such that
^(f1(x0); f2(x0); . . . fn(x0)) = 0

We say that ECP (f;K) is the explicit complementarity problem, ICP (f; g;K)
is the Implicit complementarity problem and GOCP (ffigni=1;K) the generalized
order complementarity problem. Suppose that (H; h; i) is a Hilbert space and K � H
a closed convex cone. The following result is proved in [7].
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PROPOSITION 2 ([7]). Given the mapping f : K ! H , the complementarity
problem ECP (f;K) has a solution, if and only if, the mapping

	(x) = PK(x)� f(PK(x)); for all x 2 H (1)

has a fixed point in H. If x0 is a fixed point of 	 then x� = PK(x0) is a solution of
the problem ECP (f;K).

Proof. The proof in [7] is based on Moreau’s Theorem and on the fact that
the projection operator PK is characterized by the following result. For every
x 2 H;PK(x) is the element of K satisfying the following conditions:

(i) hPK(x)� x; yi � 0; for all y 2 K

(ii) hPK(x)� x; PK(x)i = 0:

In this paper we use systematically the topological degree as it is presented in the
books [15], [16], [23].

Without other specifications, we will denote by D a bounded open subset of Rn

and by y an arbitrary point of Rn. The closure of D is written �D and its boundary
@D. We denote by C( �D) the linear space of continuous functions from �D into Rn.
If F 2 C( �D) and y 2 Rn such that y 62 F (@D) we denote by deg(F;D; y) the
degree associated with F;D and y.

If F;G 2 C( �D) we consider the homotopyH(x; t) = tG(x)+(1�t)F (x); 0 �
t � 1.

THEOREM 3 ([Poincaré–Bohl][16][23]). LetD � Rn be an open bounded subset
and F;G 2 C( �D) two continuous mappings. If y 2 Rn is an arbitrary point
satisfying the condition

y 62 fH(x; t)jx 2 @D and t 2 [0; 1]g (2)

then deg(G;D; y) = deg(F;D; y).

3. Exceptional Families

We consider in this section the space Rn endowed with the Euclidean structure.
First, consider the closed convex cone K = Rn

+ = fx = (xi) 2 Rnjxi � 0; i =
1; 2; . . . ; ng. Let f : Rn

+ ! Rn be a continuous mapping.

DEFINITION 1. A set of points fxrgr>0 � Rn

+ is an exceptional family of ele-
ments for f if kxtk ! +1 as r ! +1 and for each r > 0 there exists �r > 0
such that

(i) fi(x
r) = ��rx

r

i if xri > 0

(ii) fi(x
r) � 0 if xri = 0
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DEFINITION 2. An exceptional family of elements for f is regular if kxrk = r

for every r > 0.

Now consider the general case. Let f : Rn ! Rn be a continuous mapping and
K � Rn a closed convex cone. If Q = K0, then by the bipolarity Theorem [22] it
follows that K = �K = Q0 and hence K and Q are mutually polar. By Moreau’s
Theorem each vector z 2 Rn has a unique representation of the form

z = z+ � z� (3)

where z+ = PK(z) and z� = �PK0(z). (Note that�z� is the orthogonal comple-
ment to z+). Also, it follows that z� = z+ � z.

DEFINITION 3. A set of points fxrgr>0 � Rn is an exceptional family of ele-
ments for f , (with respect to K) if k(xr)+k ! +1 as r ! +1, and for each
r > 0 the point f((xr)+) belongs to open ray

O((xr)�; sr) = fy = (xr)� + �srj� > 0g; (4)

where sr = (xr)� � (xr)+.

REMARK. If, in particular, xr 2 K, then from (4) we have the equality

f(xr) = ��r(x
r) (5)

for some �r > 0. Considering K = Rn

+ in Definition 3 we do not obtain exactly
Definition 1. In Definition 1 there is more information about fi(xr) because of the
particularities of the cone Rn

+. For a general cone K � Rn there is also the concept
of regular exceptional family of elements.

DEFINITION 4. An exceptional family of elements for f (with respect to K) is
regular if k(xr)+k = r, for every r > 0.

The concept of regular exceptional family of elements was independently discov-
ered by T.E. Smith [24] under the name of exceptional sequence and a few years
ago, by G. Isac [unpublished notes] under the name of opposite radial sequence.
The concept of exceptional family of elements introduced in this paper is a new
concept, and it is less restrictive than the concept of regular exceptional family
of elements. We define now the concept of exceptional family of elements for a
couple of mappings. Let f; g : Rn ! Rn be continuous mappings.

DEFINITION 5. A set of points fxrgr>0 � Rn is an exceptional family of ele-
ments for the couple (f; g) if kxrk ! +1 as r ! +1; g(xr) � 0 for each r > 0
and there exists �r > 0 such that for i = 1; 2; . . . ; n

(a) fi(x
r) = ��r(gi)(x

r); if gi(x
r) > 0;

(b) fi(x
r) � 0; if gi(x

r) = 0:
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REMARK. As the problem ICP (f; g;Rn

+) is symmetrical with respect to the
mappings f and g, we can give an analogous definition of an exceptional family of
elements for the pair (g; f).

The concept of exceptional family of elements is close to the complementarity
problem; for example, one of the main results is the following. If f : Rn

+ ! Rn is a
continuous function then there exists either a solution for the problem CP (f;Rn

+)
or an exceptional family of elements for f . Hence, every continuous mapping
f : Rn

+ ! Rn with the property that the problem CP (f;Rn

+) has no solutions, has
an exceptional family of elements. Since, our aim is to obtain existence theorems
for complementarity problems, it is interesting to know when a continuous function
does not have an exceptional family of elements.

We have some interesting results for regular exceptional family of elements.
The followint classical results about rthe projection operator onto a closed convex
set in a Hilbert space are useful [14]. Let D be a closed convex set in a Hilbert
space (H; h; i). If x 2 H, then y = PD(x) if and only if

�
y 2 D and
hy; v � yi � hx; v � yi for all v 2 D;

(6)

Let f : D ! H be a mapping. The problem

�
find x 2 D such that
hf(x); y � xi � for all y 2 D;

(7)

is equivalent to the problem

�
find x 2 D such that
hx; y � xi � hx� f(x); y � xi for all y 2 D;

(8)

and by (6) we have that problem (7) is equivalent to the fixed point problem

�
find x 2 D such that
x = PD(x� f(x));

(9)

If (H; h; i) is the Euclidean space (Rn; h; i) for every r > 0 we denote [Rn

+]r =
fx 2 Rn

+jkxk � rg and the projection onto [Rn

+]r of an arbitrary element z 2 Rn

will be denoted by Pr(z). By the definition of Pr(z) it follows that Pr(z) is the
solution of the differentiable convex program.

�
minimize hz � x; z � xi

over the set fx 2 Rn

+jhx; xi � r2g:

Applying the Karush–Kuhn–Tucker optimality conditions to the Lagrangian
L(x; �) = hz � x; z � xi + �(hx; xi � r2) the following result is obtained. For
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each r > 0 and z 2 Rn we have that x 2 [Rn

+]r is such that x = Pr(z) if and only
if, there exists � � 0 such that the following conditions are satisfied:

(p1) xi = 0 ) (1 + �)xi � zi

(p2) xi > 0 ) (1 + �)xi = zi

(p3) � > 0 ) kxk = r

If f : Rn

+ ! R is a continuous function and fxrgr>0 is a regular exceptional
family of elements for f then we can show that for every r > 0, the element xr

verifies (p1); (p2); (p3) with z = xr � f(xr).
Thus, for every regular exceptional family fxrgr>0 for f we have that:

(i) xr = Pr(x
r � f(xr));

(ii) kxrk = r:

Using (9) and (7) it can be shown that for every regular exceptional family of
elements of f the following conditions are satisfied:

(iii) hf(xr); y � xri � 0 for all y 2 [Rn

+]r

(iv) kxrk = r:

Recall that f : Rn

+ ! Rn is coercive on Rn

+ if and only if

hf(x)� f(x0); x� x0i

kx� x0k
! +1 askxk ! +1; x 2 Rn

+; for some x0 2 Rn

+:

The next result is to show that the class of functions without exceptional family of
elements is nonempty.

PROPOSITION 4. Every coercive continuous function f : Rn

+ ! Rn does not
have regular exceptional families of elements.

Proof. Let fxrgr>0 be a regular exceptional family for f . For every r the prop-
erties iii) and iv) are satisfied. Since f is coercive we can take � > kf(x0)k and r0 >

kx0k such that hf(x)� f(x0); x� x0i � �kx� x0k, for every x such that kxk >
r0; x 2 Rn

+. Thus, for every r > r0 we have hf(x)� f(x0); x� x0i � �kx� x0k

for every x 2 Rn

+ such that kxk � r. This implies that8<
:
hf(x); x� x0i � �kx� x0k+ hf(x0); x� x0i �

(�� kf(x0)k)(kxk � kx0k) > 0 for every x 2 Rn

+

with kxk � r:

(10)

But, since xr satisfies (iii) we have

hf(xr); xr � x0i = �hf(xr); x0 � xri � 0

and from (10) we must have kxrk � r, that is kxrk < r which is a contradiction
of (iv). Hence, it is impossible to have a regular exceptional family of elements for
f .
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The coercive functions were used in the study of complementarity problems in
[17].

Considering the last result, we deduce that it is important to know if there exists a
noncoercive continuous function without regular exceptional families of elements.
Obviously, if f : Rn

+ ! Rn is a continuous function such that kx� f(x)k < kxk

for all x 2 Rn

+nf0g, then f is without regular exceptional families of elements.
Indeed, this fact is a consequence of properties (i) and (ii), since for every r > 0
we have

kPr(x� f(x))k = kPr(x� f(x))� Pr(0)k � kx� f(x)k

< kxk for all x 2 Rn

+nf0g

and every regular exceptional family of elements for f must satisfy (i) and (ii)
which is impossible. We consider now an example of a continuous function which is
noncoercive and without regular exceptional familes of elements. Let f : Rn

+ ! R
h

be the function defined by f(x) = x

kxk+1 for all x 2 Rn

+. The function f is
continuous and for every x 2 Rn

+nf0g we have

kx� f(x)k =





x� x

kxk+ 1





 =





�

1�
1

kxk+ 1

�
x






=

�
1�

1
kxk + 1

�
kxk < kxk:

Thus, for every x 2 Rn

+nf0g we have kx � f(x)k < kxk which implies that f
does not have regular exceptional families of elements. We show now that f is not
coercive.

Indeed, for x0 = 0 we have

hf(x)� 0; x� 0i
kxk

=
hf(x); xi

kxk
=

kxk2

kxk(kxk + 1)
and

hf(x); xi

kxk
! +1 as kxk ! +1

with x 2 Rn

+:

Suppose now that x0 6= 0 and consider the expression

hf(x)� f(x0); x� x0i

kx� x0k
:

Then

hf(x)� f(x0); x� x0i

kx� x0k
=

1
kx� x0k

�
x

kxk+ 1
�

x0

kx0k+ 1
; x� x0

�

=
1

kx� x0k

�
hx; xi

kxk+ 1
�

hx; x0i

kxk+ 1
�

hx; x0i

kx0k+ 1
+

hx0; x0i

kx0k+ 1

�
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=
1

kx� x0k

"
kxk2

kxk+ 1
�

�
1

kxk+ 1
+

1
kx0k+ 1

�
hx; x0i+

kx0k
2

kx0k+ 1

#

�
1

kxk+ kx0k

"
kxk2

kxk+ 1
�

�
1

kxk+ 1
+

1
kx0k+ 1

�
kxkkx0k+

kx0k
2

kx0k+ 1

#

=
1

kxk+ kx0k

"
kxk2

kxk+ 1
�
kxkkx0k

kxk+ 1
�
kxkkx0k

kx0k+ 1
+

kx0k
2

kx0k+ 1

#

=
kxk2

(kxk + kx0k)(kxk + 1)
�

kxkkx0k

(kxk + kx0k)(kxk + 1)

�
kxkkx0k

(kx0k+ 1)(kxk+ kx0k)
+

kx0k
2

(kxk+ kx0k)(kx0k+ 1)
:

Computing the limit as kxk ! +1 we obtain

lim
kxk!+1

hf(x)� f(x0); x� x0i

kx� x0k
= 1�

kx0k

kx0k+ 1
6= +1

which means that f is noncoercive.
Another interesting example of a function without exceptional families of ele-

ments with respect to Rn

+ is the following.
Consider an arbitrary continuous mappingT : Rn

+ ! Rn such thatPK(T (x)) =
0 for every x 2 Rn

+ and S : Rn

+ ! Rn an arbitrary continuous mapping such that
kS(x)k < kxk for every x 2 Rn

+. The mapping f(x) = x � S(x) + T (x) is
without exceptional families of elements with respect to Rn

+. Indeed, we have

kPr(x� f(x))k = kPr(x� f(x))� Pr(T (x))k

� kx� [x� S(x) + T (x)� T (x)]k � kS(x)k < kxk

for every x 2 Rn

+ and hence the conditions (i) and (ii) are not satisfied.

REMARK. The problem in which there exists a noncoercive function without
regular exceptional families of elements, was considered in Proposition 4.7 of the
paper [24], but the example presented in the proof of this proposition is incorrect,
since a functionF satisfying the both relations, kx�F (x)k < kxk and hF (x); xi �
0 is necessarily equal to zero for every x 2 Rn

+.

We conclude that the class of continuous functions without exceptional families
of elements is strictly bigger than the class of coercive functions.

4. Applications to Complementarity Problems

Now, we apply these concepts to the study of complementarity problems. Our
presentation follows the passage from the particular case to the general case. We
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consider first, the case of the Euclidean space (Rn; h; i) ordered by the closed
convex cone Rn

+ which is self-adjoint.
Let f : Rn

+ ! Rn be a continuous mapping and consider the nonlinear com-
plementarity problem

ECP (f;Rn

+) :
�

find x0 2 Rn

+ such that
f(x0) 2 Rn

+ and hx0; f(x0)i = 0

THEOREM 5. For any continuous mapping f : Rn

+ ! Rn, there exists either a
solution for the problem ECP (f;Rn

+) or an exceptional family of elements for f .
Proof. Using Proposition 2 we know that the solvability of the problem ECP

(f;Rn

+) is equivalent to the problem of finding a fixed point for the mapping

	(x) = PRn

+
(x)� f(PRn

+
(x)); (x 2 Rn):

Hence, we consider the equation x = 	(x) or

f(PRn

+
(x)) + x� PRn

+
(x) = 0 (11)

Since (Rn;Rn

+) is a Hilbert lattice we know that PRn

+
(x) = x+ (see Theorem 2

and the paper [13]), and because x� x+ = �x� the equation (11) becomes

f(x+)� x� = 0: (12)

If we denote F (x) = f(x+)� x� the problem is now to solve the equation

F (x) = f(x+)� x� = 0: (13)

We examine problem (13) in detail. Obviously, the mapping F : Rn ! Rn is
continuous, Let fSrgr>0 be the family of spheres of radius r:

Sr = fx 2 Rnjkxk = rg (14)

and Br the open ball of radius r:

Bt = fx 2 Rnjkxk < rg: (15)

We consider the homotopy between the identity mapping I and F , i.e.

H(x; t) = tx+ (1� t)F (x); 0 � t � 1 (16)

for an arbitrary x 2 @Br = Sr, and we apply Theorem 3 [Poincaré–Bohl] with
y = 0 and Br for D. This gives

H(x; t) = tx+ (1 � t)f(x+)� (1� t)x�

= t(x+ x�) + (1� t)f(x+)� x� (18)

= tx+ + (1 � t)f(x+)� x�:
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Two cases are possible:
(i) There exists an r > 0 such that

0 62 H(x; t); x 2 Sr; t 2 [0; 1]:

Then Theorem 3 implies that

deg(F;Br; 0) = deg(I;Br; 0): (19)

It is well known that deg(I;Br; 0) = 1, (cf. [16], [15], [20], [23](. Hence,
deg(F;Br; 0) = 1 also.

This means that the ball �Br contains at least one solution to the equation
F (x) = 0 [cf. Kronecker’s Theorem (Theorem 2.1.1. of [16])]. Therefore the
problem ECP (f;Rn

+) has a solution.
(ii) For each r > 0 there exist a point ur 2 Sr and a scalar tt 2 [0; 1) such that

H(ur; tr) = 0: (20)

We remark that kurk2 = hu+
r
� u�

r
; u+

r
� u�

r
i = ku+

r
k2 + ku�

r
k2 = r2: If tr = 0,

then ur solves equation (13), which implies again that the problem ECP (f;Rn

+)
has a solution. Otherwise, if tr > 0, then (18) and (20) yield

tru
+
r + (1� tr)f(u

+
r ) = u�r : (21)

From (21) we have

(1� tr)fi(u
+
r
) = �tr(u

+
r
)i; if(ur)i > 0 (22)

and

(1� tr)fi(u
+
r
) = (u�

r
)i; if(ur)i � 0: (23)

Now we put xr = u+
r

and we rearrange (22) and (23) as follows:

fi(x
r) = �

tr

1� tr
xr
i
; if xr

i
> 0; (24)

and

fi(x
r) =

1
1� tr

(u�r )i � 0; if xri = 0; (25)

We take �r = tr

1�tr
and note that (24) and (25) represent relations (i) and (ii)

from Definition 1. In order to demonstrate that fxrgr>0 is an exceptional family of
elements, we must show that kxrk ! +1 when r ! +1. On the contrary, we
suppose the set fu+

r
g to be bounded. In this case, it follows that

ku�r k =
q
r2 � ku+r k2 ! +1;

which means that the right-hand sice of (21) is unbounded. On the other hand, the
left-hand side of (21) is bounded since the set fu+r g is supposed to be bounded and
f is a continuous function. This contradiction completes the proof.

There is a similar results for regular exceptional families.
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THEOREM 6. For any continuous mapping f : Rn

+ ! Rn there exists either a
solution for the problem ECP (f;Rn

+) or a regular exceptional family of elements
for f .

Proof. Consider again the equation

F (x) = f(x+)� x� = 0: (26)

For r > 0 define the set

Dr =Wr \ �Br (27)

where

Wr = fx 2 Rnjkx+k � rg; (28)

and the number

� =
q
(maxfr;Mrg)2 + r2 + 1 (29)

with

Mr = max
x2Wr

kf(x+)k: (30)

It is easy to show that

Mr � max
x2 �Br\Rn

+

kf(x)k < +1

and hence we have that � is well defined. As in the proof of Theorem 5 we apply
again Theorem 3 to the mappings I; F and to the set Dr. It is sufficient to consider
two cases:
(i) There exists an r > 0 such that

0 62 H(x; t); x 2 @Dr; t 2 [0; 1):

Then, repeating the arguments used in the proof of Theorem 5, we obtain a solution
of the problem ECP (f;Rn

+).
(ii) For each r > 0 there exist a point ur 2 @Dr and a scalar tr 2 [0; 1) such that

H(ur; tr) = 0: (31)

If tr = 0, then ur is a solution of equation (26) which implies that the problem
ECP (f;Rn

+) has a solution.
Otherwise, if tr > 0, we obtain from the relations (21)–(25) that xr = u+

r

satisfies conditions (i) and (ii) of Definition 1.
In order to show that kxrk = r, we examine the structure of the frontier @Dr .

It is readily verified that

@Dr = Vr [ U� (32)
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where

Vr = fx 2 Rnkr = kx+k � �g = @Wr \ �B� (33)

and

U� =Wr \ S� (34)

Now we prove that ur 62 U�: Indeed, from (21) it follows that

ku�
r
k � maxfku+

r
k; kf(u+

r
)kg � maxfr;Mrg:

Hence,

kurk
2 = ku+

r
k2 + ku�

r
k2 � r2 + (maxfr;Mrg)

2 = (� � 1)2

which yields kurk < �.
Thus, ur 2 Vr and consequently kxrk = ku+r k = r. This means that fxrgr>0 is

a regular exceptional family of elements, and the theorem is completely
proved.

REMARK. We remark that Theorem 6 can be derived by using only the Hartman–
Stampacchia Theorem [10]. Indeed, suppose that ECP (f;Rn

+) has no solution.
Then V I(f;Rn

+ \ fx : kxk � rg) has a solution, say xr. We must have kxrk = r

else, xr becomes a solution of ECP (f;Rn

+). (If kxrk < r, then for any z 2 Rn

+,
kxr + "(z � xr)k < r for some " > 0. The inequality hf(xr); x� xri � 0 for all
x 2 Rn

+\fx : kxk � rg implies that hf(xr); z�xri � 0 for all z � 0, which says
that xr is a solution of ECP (f;Rn

+):). Now for the problem minfhf(xr); xi : x �
0; kxk � rgwhich takes its optimum value at xr, the KKT conditions are precisely
the conditions that appear in Definitions 1 and 2 for a regular exceptional sequence.
This proof is not applicable to Theorems 7–11. Because of this result, we use for
all the theorems only the topological degree. The topological degree can be used
also to extend our results to infinite dimensional spaces. The exceptional families
of elements can also be used to study the implicit complementarity problem.

THEOREM 7. Let f; g : Rn ! Rn be continuous mappings. If the following
assumptions are satisfied:
(1) there exists b 2 Rn such that g(x) = 0 if and only if x = b,
(2) g maps a neighborhood of the point b homeomorphically onto a neighborhood

of the origin,
then there exists either a solution of the problem ICP (f; g;Rn

+) or an exceptional
family of elements for the couple (f; g).

Proof. We consider the following equation with respect to the variable (z; x) 2
Rn � Rn:

F (z; x) =

 
f(x)� z�

g(x) � z+

!
= 0: (35)
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The problem ICP (f; g;Rn

+) is equivalent to the solvability of equation (35).
Indeed, if (z; x) solves (35), then x is a solution of the problem ICP (f; g;Rn

+).
Conversely, if x is a solution of the problem ICP (f; g;Rn

+) then (z; x) is a solution
of (35) where

zi =

�
gi(x); if gi(x) > 0;
�fi(x); if gi(x) = 0;

i = 1; 2; 3; . . . ; n:

The mapping F (z; x) is clearly continuous over R2n. Let Sr be a (2n � 1)-
dimensional sphere:

Sr = f(z; x) 2 R2njk(z; x � b)k = rg;

and Br an open ball of radius r, i.e.

Br = f(z; x) 2 R2njk(z; x � b)k < rg;

Further, we construct a homotopy H(z; x; t) of the mappings F (z; x) and

G(z; x) =

 
z

g(x)

!

in the standard way:

H(z; x; t) = tG(z; x) + (1 � t)F (z; x)

=

�
tz + (1� t)f(x)� (1� t)z�

tg(x) + (1� t)g(x)� (1� t)z+

�
=

�
tz+ + (1� t)f(x)� z�

g(x) � (1� t)z+

�
:

Hence, we have

H(z; x; t) =

�
tz+ + (1� t)f(x)� z�

g(x)� (1� t)z+

�
: (36)

Two cases are possible:
(A). There exists an r > 0 such that

H(z; x; t) 6= 0 for all (z; x) 2 Sr and t 2 [0; 1]:

The Poincaré–Bohl Theorem implies the equality

deg(F;Br; 0) = deg(G;Br; 0):

Since j deg(G;Br; 0)j = 1, we have that deg(F;Br; 0) = �1.
As above, we conclude that the ball �Br contains at least one solution of the

equation F (z; x) = 0 and the solvability of the problem ICP (f; g;Rn

+) is proved.
(B). For r > 0 there exist a point (zr; xr) 2 Sr and a scalar tr 2 [0; 1) such that

H(zr; x
r; tr) = 0: (37)
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We remark that

k(zr; x
r � b)k2

2n = kz+
r
k2
n
+ kz�

r
k2
n
+ kxr � bk2

n
= r2: (38)

If tr = 0, then (zr; x
r) solves the equation (35) and hence, xr solves the problem

ICP (f; g;Rn

+).
Otherwise, i.e. if tr > 0, from (36) and (37) we obtain

trz
+
r
+ (1� tr)f(x

r) = z�
r
; (39)

z+
r
=

g(xr)

1� tr
: (40)

Substituting expression (40) for z+
r

into (39) yields

tr

1� tr
g(xr) + (1� tr)f(x

r) = z�r

which implies for i = 1; 2; . . . ; n

fi(x
r) =

8>>><
>>>:

trg(x
r)

(1� tr)2 ; if (zr)i > 0

(z�
r
)i

(1� tr)
; if (zr)i � 0:

(41)

Taking �r = tr

(1�tr)2 we note that (41) guarantees the family of points fxrg to be

exceptional if kxrk ! +1when r ! +1. To prove the last relation, we suppose
on the contrary that the family fxrg has a finite cluster point �x and remark that
the corresponding cluster point �t cannot be equal to 1 (otherwise (38) and (39)
contradict each other).

Then the continuity of mappings f and g together with (39) and (40) imply the
boundedness of the family fzrg, which again contradicts (38), as r ! +1. This
completes the proof of Theorem 7.

We apply now the concept of exceptional family of elements to the study of the
complementarity problem with respect to an arbitrary convex cone in the Euclidean
space.

Let f : Rn ! Rn be a continuous function and K � Rn be a closed convex
cone. As indicated in the section on preliminaries, K is a pointed convex cone. In
the next result we use the concept of exceptional family of elements defined by
Definition 3. We have the following result.

THEOREM 8. If f : Rn ! Rn is a continuous function and K � Rn is a closed
pointed convex cone, then there exists either a solution for the problemECP (f;K)
or an exceptional family of elements for f .
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Proof. Using Proposition 2 and Moreau’s Theorem we have that the solvability
of the problem ECP (f;K) is equivalent to the solvability of the equation

F (x) = f(x+)� x� = 0; (42)

where x+ = PK(x) and x� = �PK0(x).
Repeating now exactly the proof of Theorem 5 we obtain that either there exists

a solution for the problemECP (f;K), or for each r > 0 there exist a point ur 2 Sr
and a scalar tr 2 (0; 1) such that the equality

tru
+
r
+ (1� tr)f(u

+
r
) = u�

r

is true.
Dividing both sides of that equality by (1� tr) and rearranging, one obtains the

relation

f(u+
r
) =

1
1� tr

u�
r
�

tr

1� tr
u+
r
= u�

r
+

tr

1� tr
(u�
r
� u+

r
); (43)

which means that f(u+r ) 2 O(u�r ; sr).
The fact that ku+r k ! +1 as r ! +1 is established in the same way as in

the proof of Theorem 5.
Thus fxrgr>0, where xr = u+r is an exceptional family of elements for f (with

respect to K) and this completes the proof.

By an argument similar to the proof of Theorem 6 we obtain the following result.

THEOREM 9. For any continuous mapping f : Rn ! Rn and any closed point
convex cone K � Rn, there exists either a solution for the problem ECP (f;K),
or a regular exceptional family of elements for f .

In [6], [7], [12] interesting relations between the problems GOCP (ffigni=1;K)
and ICP (f;K) are established.

In this way we can apply the concept of exceptional family of elements to the
study of the problem GOCP (ffig

n

i=1;K).
Indeed, it is well known that if (Rn; h; i;K) is a Hilbert lattice with respect to

the ordering defined by K and if x; y 2 K, then x^ y = 0 if and only if hx; yi = 0.
We have the following result.

THEOREM 10. Let f1; f2; . . . ; fm be continuous mappings from Rn into Rn. If the
following assumptions are satisfied:
1. there exists b 2 Rn such that f1(x) = 0 if and only if x = b,
2. f1 maps a neighborhood of the point b homeomorphically onto a neighborhood

of the origin,
then there exists either a solution of the problemGOCP (ffig

m

i=1;R
n

+) or an excep-
tional family of elements for the couple (h; f1) where h(x) = ^(f2(x); f3(x); . . . ;
fm(x)) for each x 2 Rn.
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Proof. Since (Rn; h; i;Rn

+) is a Hilbert lattice we have that the problemGOCP

(ffig
m

i=1;R
n

+) is equivalent to the problem ICP (h; f1;Rn

+). The conclusion of
the theorem follows from Theorem 7, since we can show that h is a continuous
mapping.

REMARK. Given f1; f2; f3; . . . ; fm continuous mappings from Rn into Rn, and
considering the mapping h(x) = ^(f2(x); . . . ; fm(x)) it is useful to know under
what conditions the couple (h; f1) is without exceptional families of elements.

COROLLARY. If the mappings f1; f2; f3; . . . ; fm, from Rn and Rn, are continuous,
f1 satisfies the assumptions 1) and 2) of Theorem 10 and the couple (h; f1) is
without exceptional families of elements, where h = ^(f2; . . . ; fm), then the
problem GOPC(ff1g

m

i=1;R
n

+) has a solution.

Certainly, a natural question is to know if the results presented in this apper are
true in an arbitrary infinite dimensional Hilbert space. In this sense we have the
next result for cones with compact base. The cones with compact base are studied
in [22].

THEOREM 11. Let (H; h; i) be an arbitrary Hilbert space, K � H a closed
pointed convex cone and f : H ! H a continuous function. If K has a compact
base and f is a completely continuous operator, then there exists either a solution
for the problem ECP (f;K) or an exceptional family of elements for f .

Proof. Indeed, the solvability of problemECP (f;K) is equivalent to the solv-
ability of equation

F (x) = x� PK(x) + f(PK(x)) = 0 (44)

or

F (x) = x� [PK(x)� f(PK(x))] = 0: (45)

Since K has a compact base, it is a locally compact cone, which implies that
PK is a completely continuous operator. We have that F is a Leray–Schauder map
and hence, the topological degree is well defined [23], [16].

The proof follows the proof of Theorem 8, but using in this case the Poincaré–
Bohl’s Theorem as presented in the book [23]. (Theorem 1 must be also used).

OPEN PROBLEMS. The following open problems can be considered:
(1) Find a test or an algorithm which can be used to decide whether or not a

function is without exceptional families of elements.
(2) Study the relations between the property of a function f to be without excep-

tional families of elements when f is an affine function and the classes of
matrices studied by C.B. Garcia in [2].

(3) Generalize the results presented in this paper to the infinite dimensional case.
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Conclusions

Considering our results, presented in this paper, we suggest that the concept of
exceptional family of elements associated to a continuous function opens a new
interesting research direction in the complementarity theory. The relation between
this concept and the topological degree is a sufficient argument to conclude that
the property to be without exceptional family of elements is a deep property of
continuous functions. Probably, this property can be considered as a substantial
generalization of the concept of coercive function.
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