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Abstract. By using the topological degree we introduce the concept of “exceptional family of
elements’ specifically for continuous functions. This has important consequences pertaining to the
solvahility of the explicit, the implicit and the general order complementarity problems. In this way
anew direction for research in the complementarity theory is now opened.
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1. Introduction

Complementarity theory isanew and interesting domain of applied mathematics. It
isalink between such conceptsasfixed point theory topological degree, variational
inequalities, linear and nonlinear analysisand domains of applied mathematicslike
optimization, game theory, economics, classical mechanics and stochastic optimal
control etc. [1], [10], [19].

It isassociated with the idea of “equilibrium” as studied in physics, engineering
and even economics [6-13]. Its implication to the study of global optimization is
also important [21].

The relations between the complementarity theory and the global optimization
is also an important aspect.

Severa kinds of complementarity problems have been defined and are being
studied. There are explicit and implicit complementarity problems, each of which
can be considered with respect to adual system or with respect to an ordering [6],
(81, [9], [11], [12].

In this paper we introduce the concept of exceptional family of elements for a
function with respect to a convex cone, and we establish some relations between
this notion, the topological degree and the complementarity problem. The main
results are several alternative theorems with applications to the solvahility of the
most important kind of general nonlinear complementarity problems.

It is remarkable that our existence results for complementarity problems are
based only on the concepts of exceptional family of elements and continuity.
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The fundamental idea of this paper is the relation between the concept of
exceptional family of elements, the topological degree and the complementarity
problem. Thetopological degreewasal so used by other authorsin the study of com-
plementarity problems[3-5]. In this paper we consider nonlinear complementarity
problems only.

2. Preliminaries

The preliminaries are presented in a general Banach or Hilbert space, since the
same notions can be used to generalize our results to an infinite dimensional
Hilbert space.

Let (E,| ||) be aBanach space and let E* be the topological dual of E. We
denote by (E, E*) aduality between E and E*. We say that K C F is aclosed
convex cone if and only if K is a closed subset and the following properties are
satisfied:

(1). K+KCK

(2). MK CKfordl X e Ry,
(3). Kn(=K) = {0}.

Whenever a closed convex cone K C FE is defined, we have an ordering on
defined by « < y, if and only if y — z € K. By definition the dual of K is
K* = {y € E*|(z,y) > Ofor all z € K}. Note that K* is also a closed convex
cone. We say that the ordered Banacgh space (E, || ||,K) is a vector lattice, if
and only if, for every pair (z,y) of elements of F, the supremum z Vv y and the
infimum z A y exist in E. If (E,|| ||,K) is a vector lattice we define for every
r € E, gt =2V 0,2 = (—z) V0, ad |z| = 2+ + . Other properties of
zt,z~ and |z| are presented and proved in [22]. Suppose now that (E, || ||) isa
Hilbert space denoted by (H, (,)) where (, ) istheinner product defined on H.

We say that an ordered Hilbert space (H, (, ), K) isaHilbert lattice if and only
if:

(h1) H isavector lattice,

(h2) ll=lll = [lz[| for every z € H
(hs) 0<z <y implies|z| < |yl foreveryz,y € K.

If D C H isaclosed convex set we denote the projection onto D by Pp that is,
for every x € H, Pp(z) isthe unique element satisfying,

- P =min||lz — y|.
lz = Pp(2)] = min [lz — y|
If K C H isaclosed convex cone we denote the projection onto K by Pk .

The polar cone of K is by definition K® = {z € H|(z,y) < Oforal y € K};
polarity is studied in the book [22]. If K and Q are two closed convex conesin
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H then K and Q are mutually polar if K = Q°. We recall the following classical
result.

THEOREM 1 ([Moreau] [18]). If K and Q are two mutually polar convex cones
inaHilbert spaceH and z, y, z € H, then the following statements are equivalent:

(i) z=xz+4+y,ze€K,yeQand(x,y) =0,
(it) = = Px(z)andy = Py(z).

Theoperator P« hasseveral special propertiesand thefollowing notion was defined
and studied in [13].

We say that K is an isotone projection cone if and only if, for every z,y €
H,z < yimpliesthat P« (z) < Pk (y). Thefollowingresultisprovedin[13].

THEOREM 2. If (H, (,),K) is a Hilbert lattice then K is an isotone projection
cone and moreover, Px () = x for every z € H.

This result justifies some of our notations and also, by this result we have that for
the Euclidean space (R", (,)), Prr (z) = 2™ for every z € R™.

The principal aim of our paper is the study of the following three kinds of
complementarity problems.

Let (F, E*) be aduality of Banach spacesand let K C F be a closed convex
cone. Giventhemappings f : K — E*;g: D — E,where D C E isasubset, we
consider the following complementarity problems:

. [ find zp € K such that,
BOPUK) | e k- and (o o) 0
find zg € D such that,
ICP(fagaDaK) : {g(x()) € Kaf(xO) € K* and
(9(20), f(20)) =0

When D = K we denotethe last problem by IC'P(f, g,K). If E isavector lattice
with respect to the ordering defined by K and f1, fo, ... f, are mappings from E
into £ we consider the problem

an . | find zg € K such that
GOCPURYELK): { Ny ot (o) = 0

We say that EC'P(f,K) is the explicit complementarity problem, ICP(f, g,K)
is the Implicit complementarity problemand GOCP({ f;}I_;, K) the generalized
order complementarity problem. Supposethat (H, (, )) isaHilbert spaceandK C H
aclosed convex cone. The following result is proved in [7].
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PROPOSITION 2 ([7]). Given the mapping f : K — H, the complementarity
problem ECP(f,K) hasa solution, if and only if, the mapping

U(z) = Pc(z) — f(Px(z)); forall z € H 1)

has a fixed point in H. If 2o isa fixed point of ¥ then 2, = Px (z0) isa solution of
the problem ECP(f,K).

Proof. The proof in [7] is based on Moreau’'s Theorem and on the fact that
the projection operator Py is characterized by the following result. For every
x € H, P (z) isthe element of K satisfying the following conditions:

(1) (Px(z) —=z,y) >0, foralyekK
(i1) (Px(z) — =z, Px(z)) = 0. u

In this paper we use systematically the topological degree asit is presented in the
books[15], [16], [23].

Without other specifications, wewill denote by D abounded open subset of R”
and by y an arbitrary point of R™. The closure of D iswritten D and its boundary
0D. We denote by C(D) the linear space of continuous functions from D into R™.
If F € C(D)andy € R" suchthat y ¢ F(9D) we denote by deg(F, D, y) the
degree associated with ', D and y.

If F,G € C(D) weconsiderthehomotopy H(z,t) = tG(z)+ (1—t)F(z),0 <
t <1

THEOREM 3 ([Poincaré-Bohl][16][23]). Let D C R™ bean open bounded subset
and F,G € C(D) two continuous mappings. If y € R™ is an arbitrary point
satisfying the condition

y & {H(z,t)|xr € 0D andt € [0, 1]} 2
then deg(G, D, y) = deg(F, D, y). ]

3. Exceptional Families

We consider in this section the space R” endowed with the Euclidean structure.
First, consider the closed convex coneK = R’} = {z = (z;) € R"[z; > 0,i =
1,2,...,n}. Let f : R, — R" be acontinuous mapping.

DEFINITION 1. A set of points {z"},~0 C R’} isan exceptional family of ele-
ments for f if |z!|| — +o0o0 asr — +oo and for each r > 0 there exists 1, > 0
such that

(1) fi(z") = —ppz; i 27 >0
(i1) fi(z") >0 if 2} =0
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DEFINITION 2. An exceptiona family of elements for f isregular if ||2"|| = r
for every r > O.

Now consider the general case. Let f : R” — R"™ be a continuous mapping and
K c R" aclosed convex cone. If Q = K9, then by the bipolarity Theorem [22] it
follows that K = K = Q° and hence K and Q are mutually polar. By Moreau's
Theorem each vector z € R™ has a unique representation of the form

z2=2"— 2" (3)

where z™ = Px(z) and 2~ = —Pyo(z).

(Notethat —z~ isthe orthogonal comple-
ment to z*). Also, it followsthat 2= = 2+

z —Z.

DEFINITION 3. A set of points {z"},~0 C R™ is an exceptional family of ele-
ments for f, (with respect to K) if ||(z")*|| — 400 asr — +o0o, and for each
r > 0thepoint f((z")™") belongsto open ray

O((z") "5 sr) ={y = (") + psp|u > OF; (4)
where s, = (z") — (") T.
REMARK. If, in particular, " € K, then from (4) we have the equality

fa") = —pr(2") ©)

for some pi,. > 0. Considering K = R} in Definition 3 we do not obtain exactly
Definition 1. In Definition 1 there is more information about f;(z") because of the
particularities of the cone R’} . For agenera coneK C R™ thereis also the concept
of regular exceptional family of elements.

DEFINITION 4. An exceptiona family of elements for f (with respect to K) is
regular if ||(z") ™| = r, for every r > 0.

The concept of regular exceptional family of elements was independently discov-
ered by T.E. Smith [24] under the name of exceptional sequence and a few years
ago, by G. Isac [unpublished notes] under the name of opposite radial sequence.
The concept of exceptional family of elements introduced in this paper is a new
concept, and it is less restrictive than the concept of regular exceptional family
of elements. We define now the concept of exceptional family of elements for a
couple of mappings. Let f, g : R® — R™ be continuous mappings.

DEFINITION 5. A set of points {z,},~0 C R™ is an exceptional family of ele-
ments for the couple (f, g) if ||z"|| — +o0 asr — +00,g(z") > O0foreachr > 0
and there exists i, > Osuchthatfori =1,2,...,n

(a) fi(z") = —pr(gi)(2"), if gi(z") > 0;
(b) fi(z") >0, if gi(z")=0.
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REMARK. As the problem IC'P(f,g,R" ) is symmetrical with respect to the
mappings f and g, we can give an anal ogous definition of an exceptional family of
elementsfor the pair (g, f).

The concept of exceptional family of elements is close to the complementarity
problem; for example, one of the main resultsisthefollowing. If f : R — R™isa
continuous function then there exists either a solution for the problem CP(f,R’})
or an exceptional family of elements for f. Hence, every continuous mapping
[+ R% — R™ with the property that the problem C'P( f, R"} ) has no solutions, has
an exceptional family of elements. Since, our aim is to obtain existence theorems
for complementarity problems, it isinteresting to know when a continuousfunction
does not have an exceptional family of elements.

We have some interesting results for regular exceptional family of elements.
Thefollowint classical results about rthe projection operator onto a closed convex
set in a Hilbert space are useful [14]. Let D be a closed convex set in a Hilbert
space (H, (,)). If z € H, theny = Pp(x) if and only if

y € Dand )
(y,v —y) > (x,v —y) foralv e D;

Let f : D — H beamapping. The problem
find 2z € D such that @
(f(z),y —x) > forally € D,

is equivalent to the problem
find x € D such that )
(z,y —z) 2 (z — f(z),y —=z)foraly € D,

and by (6) we have that problem (7) is equivalent to the fixed point problem
find x € D such that )
z = Pp(z — f(z)),

If (H,(,)) isthe Euclidean space (R", (,)) for every r > 0 we denote [R}], =
{z € RY|||z| < r} and the projection onto [R"} ], of an arbitrary element z € R
will be denoted by P, (z). By the definition of P,(z) it follows that P,(z) is the
solution of the differentiable convex program.

minimize (z — ¢,z — )
over theset {z € R"|(z,z) < r?}.

Applying the Karush—Kuhn-Tucker optimality conditions to the Lagrangian
L(z,p) = (z — z,z — x) + p({z,z) — r?) the following result is obtained. For
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eachr > Oand z € R" we havethat = € [R}], issuchthat z = P,(z) if and only
if, there exists ;» > 0 such that the following conditions are satisfied:

(p1) zi=0= (1+p)z;i > %

(p2) i >0= (1+p)zi =2

(p3) w>0= |z =r

If f: R} — R isacontinuous function and {z" },~0 is a regular exceptional
family of elements for f then we can show that for every » > 0, the element ="

verifies (p1), (p2), (p3) with z = =" — f(z").
Thus, for every regular exceptiona family {z" },~o for f we have that:

(i) 2" =P(z" = f(2)),
(i) =] = 7.

Using (9) and (7) it can be shown that for every regular exceptional family of
elementsof f the following conditions are satisfied:

(éi1) (f(z"),y —2") > Oforall y € [R}],
() "]l = 7.

Recall that f : R"} — R™ iscoerciveon R’} if and only if
(f(z) — f(z0), 2 — z0)

[l = ol

— +oo asl|z|| = +oo,z € R, for somez € RY}.

The next result isto show that the class of functions without exceptional family of
elementsis nonempty.

PROPOSITION 4. Every coercive continuous function f : R} — R" does not
have regular exceptional families of elements.

Proof. Let {z"},-0bearegular exceptional family for f. For every r the prop-
ertiesiii) andiv) aresatisfied. Since f iscoercivewecantakep > || f(xo)|| andrg >
||zo|| suchthat (f(z) — f(zo),x — zo) > p|lz — zol|, for every z such that ||z|| >
ro, x € R’ Thus, for every r > ro we have (f(x) — f(zo), = — zo) > pllz — x|
for every 2 € R} suchthat ||| > r. Thisimplies that

(f(z),z —z0) > pllz — w0|| + (f (70), T — w0) >
(o = |If (zo)ll)(lz[| — |lzoll) > Ofor every z € R} (10)
with ||z]| > r.

But, since 2" satisfies (iii) we have
(f(z"),2" —z0) = —(f(z"),20—2") <O

and from (10) we must have ||z"|| > r, that is ||z"|| < r which is a contradiction
of (iv). Hence, it isimpossible to have aregular exceptional family of elementsfor

I ]
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The coercive functions were used in the study of complementarity problems in
[17].

Considering thelast result, we deducethat it isimportant to know if thereexistsa
noncoercive continuous function without regular exceptional families of elements.
Obvioudly, if f : R} — R™ isacontinuous function such that ||z — f(z)|| < [|z||
for all z € R\ {0}, then f is without regular exceptional families of elements.
Indeed, this fact is a consegquence of properties (i) and (ii), since for every » > 0
we have

1P (z = f@) = [[Pr(z = f(2) = P-(O)]| < llz — f(z)]l
< ||| for all z € R™\ {0}

and every regular exceptional family of elements for f must satisfy (i) and (ii)
whichisimpossible. We consider now an exampleof acontinuousfunctionwhichis
noncoercive and without regular exceptional familesof elements. Let f : R"} — RP
be the function defined by f(z) = ﬁ forall z € R’. The function f is

continuous and for every z € R\ {0} we have

[~ el = (- )
o] +1 el+1

1
— (- g ) ol < Dol
(s

Thus, for every + € R} \{0} we have ||z — f(z)|| < ||| which implies that f
does not have regular exceptional families of elements. We show now that f isnot
coercive.

Indeed, for o = O we have

lz = f ()]

(f(#)—0,5—0) _ (f(x),7) ]2
- = d
7] L el "
LH";)”'Q”) o0 as Jal] — 4o
withx € Ri.

Suppose now that g # 0 and consider the expression

(f(z) = f(wo), s — !L"o)_

[l = ol
Then
(f(z) = f(z0),z —w0) _ 1 < z 1 x_xo>
I — ol lz = zoll \llz[l +1  |lzoll + 1’

— 1 <ZL‘,ZL‘> i <ZL‘,:L‘0> N (:U,:Uo> <ZL‘0,:L‘0>:|
|z —zoll Lzl +1 2zl +1 (ol +1 ° [lzoll +1
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|z — ol [zl +1 \lz[[+1 ol +1/ " [zl +1
1 [Ed5 ( 1 1 > ENE

> - + zllzoll+ 7 =

[zl + llzoll [zl +1 \llz[|+1 |lzof +1 [|zoll + 1
_ 1 l=® llllllzoll  llllllzol lzo|?

2l + llzoll [Nzl +1  llz[l+1  flwoll +1  [[woll +1
_ [EdS B [z lloll

(lzll + lzolDCllzll +21) =l + [lzol) ([l + 1)

[z lloll EN&

(Teoll + D) (fall + Tlzoll) " (Tl + ol (Toll + 1)

Computing the limit as ||z|| — +oo we obtain

(f(x) — f(xo),x — o) _ 1 [E

el —-+00 [ — o] 7 lzoll + 1

# 400

which meansthat f is noncoercive.

Another interesting example of a function without exceptional families of ele-
ments with respect to R’} is the following.

Consider an arbitrary continuousmapping 7" : R} — R™ suchthat P (T'(x)) =
Oforevery z € R’} and S : R"}, — R™ an arbitrary continuous mapping such that
1S(z)|| < ||l=|| for every € R’}. The mapping f(z) =  — S(z) + T(x) is
without exceptional families of elements with respect to R”} . Indeed, we have

1P (z = f@)|| = 1Pz = f(x)) = P (T(2))]l
< oz =z = S(@) + T(x) =T < [S)] <l

for every = € R} and hence the conditions (i) and (ii) are not satisfied.

REMARK. The problem in which there exists a noncoercive function without
regular exceptional families of elements, was considered in Proposition 4.7 of the
paper [24], but the example presented in the proof of this proposition is incorrect,
sinceafunction F' satisfying thebothrelations, ||z — F(z)|| < ||z| and (F(z), z) <
0 is necessarily equal to zero for every = € R}

We concludethat the class of continuousfunctionswithout exceptional families
of elementsis strictly bigger than the class of coercive functions.
4. Applicationsto Complementarity Problems

Now, we apply these concepts to the study of complementarity problems. Our
presentation follows the passage from the particular case to the general case. We
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consider first, the case of the Euclidean space (R", (,)) ordered by the closed
convex cone R’} which is self-adjoint.

Let f : R} — R" be acontinuous mapping and consider the nonlinear com-
plementarity problem

find zo € R”} such that

ECP(f,RY): {f(:ro) € R% and (zo, f(z0)) =0

THEOREM 5. For any continuous mapping f : R’} — R", there exists either a

solution for the problem EC'P(f,R"}) or an exceptional family of elementsfor f.
Proof. Using Proposition 2 we know that the solvability of the problem EC' P

(f,R’) isequivalent to the problem of finding afixed point for the mapping

U(z) = Pre(z) — f(Pre (7)), (z € R™).
Hence, we consider the equation z = ¥ (z) or
f(Pre(z)) + 7 — Pre(z) =0 (11)

Since (R",RY) is a Hilbert lattice we know that Pr» (z) = x " (see Theorem 2
and the paper [13]), and because z — 2™ = —x~ the equation (11) becomes

f(z™) -z~ =0. (12)
If we denote F(z) = f(xz+) — z~ the problem is now to solve the equation
F(z) = f(z") -2~ =0. (13)

We examine problem (13) in detail. Obviously, the mapping F' : R” — R" is
continuous, Let { S, },~o be the family of spheresof radius r:

Sy ={z € R"|[|lz|| =r} (14)
and B, the open ball of radiusr:
={z e R"|||lz|]| < r}. (15)
We consider the homotopy between the identity mapping 7 and F', i.e.
H(z,t) =tz +(1—1t)F(z);0<t<1 (16)

for an arbitrary = € 9B, = S,, and we apply Theorem 3 [Poincaré-Bohl] with
y = 0and B, for D. Thisgives

H(z,t) =tz + (1—t)f(z") — (1 -

=tz+z )+ A-1)f(z

= te" +(1-t)f(z") —a”

)
) - (18)
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Two cases are possible;
(i) Thereexistsan r > 0 such that

0¢& H(x,t),z € S,,t €0,1].
Then Theorem 3 implies that

deQ(Fa B;., O) = deQ(Ia B;., O)- (19)
It is well known that deg(I, B,,0) = 1, (cf. [16], [15], [20], [23](. Hence,
deg(F, B,,0) = laso. B

This means that the ball B, contains at least one solution to the equation

F(z) = 0 [cf. Kronecker’s Theorem (Theorem 2.1.1. of [16])]. Therefore the
problem ECP(f,R’}) hasasolution.
(ii) For each r > Othere exist apoint u, € S, and ascalar t; € [0, 1) such that

H(up,t,) = 0. (20)

We remark that ||u,||? = (uf —u, ut —us) = ||luf||? + |jus |2 = 2. 1f t, =0,
then «, solves equation (13), which implies again that the problem ECP(f, R} )
has a solution. Otherwisg, if ¢, > 0, then (18) and (20) yield

tu + (L= t,) f(u)) = u, . (21)
From (21) we have

(L= tr) filuy) = —te (w)s, if(ur); > 0 (22)
and

(L —t,) filu) = (u; )i, if(ur)i <O. (23)
Now we put z" = u," and we rearrange (22) and (23) as follows:

fila") = —1%3; if a7 > 0; (24)
and

fi(a) = 1_1tr (u-); >0, ifaf = O (25)
We take p, =

from Definition 1 In order to demonstratethat {z" },~¢ isan exceptional family of
elements, we must show that ||z"|| — +oo whenr — +oo. On the contrary, we
suppose the set {u;} to be bounded. In this case, it follows that

luz | = /72 = [l [|2 = +o0,

which means that the right-hand sice of (21) is unbounded. On the other hand, the
left-hand side of (21) is bounded sincethe set {u,"} is supposed to be bounded and
f isacontinuous function. This contradiction completes the proof. [ |

Thereisasimilar results for regular exceptional families.
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THEOREM 6. For any continuous mapping f : R} — R" there exists either a
solution for the problem EC'P(f, R’} ) or aregular exceptional family of elements
for f.

Proof. Consider again the equation

F(z) = f(z") -2~ =0. (26)
For r > 0 define the set

D, =W,NB, (27)
where

W, = {z € R"[|"|| <r}, (28)
and the number

5 = \/(max{r, M, })2 + 12 + 1 (29)
with

M; = max 1f (D). (30)

It is easy to show that

My < max_ || f(z)] < 400
+

reB,N
and hence we have that § is well defined. Asin the proof of Theorem 5 we apply
again Theorem 3 to the mappings 7, F' and to the set D,.. It is sufficient to consider

two cases:
(i) Thereexistsan r > 0 such that

0¢ H(z,t),z € OD,,t € [0,1).

Then, repeating the arguments used in the proof of Theorem5, we obtain asolution
of the problem ECP(f,R").
(ii) For each r > Othere exist apoint v, € 0D, and ascaar ¢, € [0, 1) such that

H(uy, t,) = 0. (31)

If t, = O, then u, isasolution of equation (26) which implies that the problem
ECP(f,R) hasasolution.

Otherwise, if ¢, > 0, we obtain from the relations (21)—«(25) that z" = u,
satisfies conditions (i) and (ii) of Definition 1.

In order to show that ||z" || = r, we examine the structure of the frontier 9D,
It isreadily verified that

oD, =V, UU; (32)
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where

V; ={z € R"||r = ||lz7|| < 0} = OW, N Bs (33)
and

Us = W, NS5 (34)

Now we prove that u, & Us. Indeed, from (21) it follows that
iy || < max{{lugt [, 11 (u) 1} < max{r, M, }.

Hence,
lurl? =l 112 + [luy 12 < 72 + (max{r, M, })? = (§ — 1)?

which yields ||u,|| < 4.

Thus, u, € V; and consequently ||z"|| = ||u," || = r. Thismeansthat {z" },~¢iS
a regular exceptional family of elements, and the theorem is completely
proved. [ |

REMARK. We remark that Theorem 6 can be derived by using only the Hartman—
Stampacchia Theorem [10] . Indeed, suppose that ECP(f,R’}) has no solution.
ThenVI(f,R} Nn{xz:|z| <r}) hasasolution, say =". We must have ||z"|| = r
else, " becomes a solution of ECP(f,R"). (If ||z"|| < r, thenfor any z € R},
|z" + e(z — z")|| < r for somee > 0. Theinequdity (f(z"),z — z") > Ofor al
z e RTEN{z: ||z|| <r}impliesthat (f(«"),z—2") > Oforal z > 0, which says
that 2" isasolution of ECP(f,R’,).). Now for the problemmin{(f(z"),z) : >
0, ||z < r} whichtakesits optimum valueat =", the KK T conditions are precisely
the conditionsthat appear in Definitions 1 and 2 for aregular exceptional sequence.
This proof is not applicable to Theorems 7—11. Because of this result, we use for
all the theorems only the topological degree. The topological degree can be used
also to extend our results to infinite dimensional spaces. The exceptional families
of elements can also be used to study the implicit complementarity problem.

THEOREM 7. Let f,g : R® — R"™ be continuous mappings. If the following
assumptions are satisfied:
(1) thereexistsb € R™ suchthat g(z) = Oif and only if z = b,
(2) g maps a neighborhood of the point b homeomor phically onto a neighborhood
of the origin,
then there exists either a solution of the problem IC P(f, g, R’} ) or an exceptional
family of elements for the couple (f, g).
Proof. We consider the following equation with respect to the variable (z, z) €
R™ x R™:

Fl(z,0) = (f (=) = z_> —o. (35)
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The problem ICP(f,g,R"}) is equivaent to the solvability of equation (35).
Indeed, if (z,2) solves (35), then « is a solution of the problem IC'P(f, g,R’ ).
Conversely, if - isasolution of the problem IC'P( f, g, R’} ) then (z, x) isasolution
of (35) where

_ [ gi(z), ifgi(z) >0, L
zi_{—fi(:r),ifgi(x): i=123,...,n

The mapping F(z,z) is clearly continuous over R?". Let S, be a (2n — 1)-
dimensional sphere:

Sy = {(z,2) € R¥|||(z, 2 = b)|| =},
and B, an open ball of radiusr, i.e.
B, = {(z,z) € R®|||(z,z — b)|| <r},

Further, we construct a homotopy H (z, z, t) of the mappings F'(z, z) and

in the standard way:

H(z,z,t) =tG(z,z) + (1 — t)F(z,x)

:<tz+(1 t)f(z) — (L—t)z~ )
tg(x) + (1 —t)g(x) — (1 —1)z"

Hence, we have

2zt — xr)— 2z
e = (0,

(tz+ +(1-t)f(z) — z)
g(z) — (1—-t)z* '

Two cases are possible:
(A). Thereexistsan r > 0 such that

H(z,z,t) # 0foradl (z,z) € S, andt € [0,1].
The Poincaré-Bohl Theorem implies the equality
deg(F, B;,0) = deg(G, B;,0).

Since | deg(G, By, 0)| = 1, we have that deg(F, B,,0) = +1.

As above, we conclude that the ball B, contains at least one solution of the
equation F'(z, z) = 0 and the solvability of the problem IC'P(f, g, R} ) is proved.
(B). For r > Othereexist apoint (z,,z") € S, and ascalar ¢, € [0, 1) such that

H(z,z",t,) =0. (37)
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We remark that
1z, 2" = )15, = 127112 + |27 115 + l2" — b]|3 = 72 (38)

If ¢, = 0O, then (z,,2") solvesthe equation (35) and hence, =" solves the problem
ICP(f,g,RY).
Otherwise, i.e. if ¢, > 0, from (36) and (37) we obtain

trzt + (L—t.)f(z") = 2, (39)
_g(=")
zt = — (40)

Substituting expression (40) for z' into (39) yields

e + (=)@ = 5

whichimpliesfori=1,2,...,n

B9 e, > 0
e =4 G (@)
L e <0

Taking p, = (lf—t)z we note that (41) guarantees the family of points {z"} to be
exceptional if ||z"|| — +o0o whenr — +oo. To provethelast relation, we suppose
on the contrary that the family {z"} has afinite cluster point z and remark that
the corresponding cluster point ¢ cannot be equal to 1 (otherwise (38) and (39)
contradict each other).

Then the continuity of mappings f and ¢ together with (39) and (40) imply the
boundedness of the family {z, }, which again contradicts (38), asr — +occ. This
completes the proof of Theorem 7. [ |

We apply now the concept of exceptional family of elements to the study of the
complementarity problem with respect to an arbitrary convex conein the Euclidean
space.

Let f : R — R" be a continuous function and K € R™ be a closed convex
cone. Asindicated in the section on preliminaries, K is a pointed convex cone. In
the next result we use the concept of exceptional family of elements defined by
Definition 3. We have the following result.

THEOREM 8. If f : R — R™ isa continuous function and K € R" isa closed
pointed convex cone, then there existseither a solution for theproblem EC P( f, K)
or an exceptional family of elementsfor f.
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Proof. Using Proposition 2 and Moreau's Theoremwe have that the solvability
of the problem EC P( f,K) is equivalent to the solvability of the equation

F(z) = f(z") -2~ =0, (42)

wherez™ = Px(z) and 2~ = —Pyo(x).

Repeating now exactly the proof of Theorem5 we obtain that either there exists
asolutionfor theproblem EC P(f,K), or for eachr > Othereexistapointu, € S,
and ascalar t, € (0,1) such that the equality

truy” + (1= t) f (") = u,

istrue.
Dividing both sides of that equality by (1 — ¢, ) and rearranging, one obtains the
relation

P
flur) == 15"
which meansthat f(u,) € O(u, ; s;).
The fact that ||u;" || — +oco asr — +oo is established in the same way asin
the proof of Theorem 5.
Thus {z" },~0, Where z" = v, isan exceptional family of elementsfor f (with
respect to K) and this completes the proof. [ |

(U’r_ - uj)v (43)

By an argument similar to the proof of Theorem 6 we obtain the following result.

THEOREM 9. For any continuous mapping f : R” — R™ and any closed point
convex cone K C R", there exists either a solution for the problem EC P(f,K),
or aregular exceptional family of elementsfor f.

In [6], [7], [12] interesting relations between the problems GOCP({ fi}i-1,K)
and ICP(f,K) are established.

In this way we can apply the concept of exceptional family of elements to the
study of the problem GOCP ({ f;}71,K).

Indeed, it is well known that if (R", (,), K) is a Hilbert lattice with respect to
the ordering defined by K and if z,y € K, thenz Ay = Oif andonly if (x,y) = 0.
We have the following result.

THEOREM 10. Let f1, fo, ..., fm becontinuous mappingsfromR" into R". If the
following assumptions are satisfied:

1. thereexistsb € R” suchthat f1(x) = Oif andonly if z = b,

2. f1 mapsaneighborhood of the point 5 homeomor phically onto a neighborhood

of the origin,

then there existseither a solution of the problenGOC P ({ f;};~1, R’} or anexcep-
tional family of elements for the couple (h, f1) where h(z) = A(f2(x), fa(z), ...,
fm(z)) for eachz € R™.
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Proof. Since(R", (,), R"}) isaHilbert lattice we havethat the problen GOC P
({fi}i%1,R?) is equivalent to the problem ICP(h, f1,R"} ). The conclusion of
the theorem follows from Theorem 7, since we can show that 4 is a continuous

mapping. [ |

REMARK. Given f1, fo, f3,..., fm coOntinuous mappings from R™ into R™, and
considering the mapping h(z) = A(f2(x),..., fm(z)) it is useful to know under
what conditions the couple (5, f1) is without exceptional families of elements.

COROLLARY. If themappings f1, f2, f3,- .., fm, fromR™ and R", are continuous,
f1 satisfies the assumptions 1) and 2) of Theorem 10 and the couple (h, f1) is
without exceptional families of elements, where h = A(f2,..., fm), then the
problem GOPC({ f1}i*,,R) hasasolution.

Certainly, a natural question is to know if the results presented in this apper are
true in an arbitrary infinite dimensional Hilbert space. In this sense we have the
next result for cones with compact base. The cones with compact base are studied
in[22].

THEOREM 11. Let (H,(,)) be an arbitrary Hilbert space, K C H a closed
pointed convex cone and f : H — H a continuous function. If K has a compact
baseand f is a completely continuous operator, then there exists either a solution
for the problem EC P(f,K) or an exceptional family of elementsfor f.

Proof. Indeed, the solvability of problem EC P(f, K) isequivalent to the solv-
ability of equation

F(z) =z — Px(z) + f(Pk(z)) =0 (44)
or
F(z) =z —[Pk(z) — f(P(z))] = 0. (45)

Since K has a compact base, it is a locally compact cone, which implies that
Pk isacompletely continuous operator. We havethat F is a L eray—Schauder map
and hence, the topological degreeis well defined [23], [16].

The proof follows the proof of Theorem 8, but using in this case the Poincaré-
Bohl’s Theorem as presented in the book [23]. (Theorem 1 must be also used). B

OPEN PROBLEMS. The following open problems can be considered:

(1) Find a test or an algorithm which can be used to decide whether or not a
function is without exceptional families of elements.

(2) Study the relations between the property of afunction f to be without excep-
tional families of elements when f is an affine function and the classes of
matrices studied by C.B. Garciain [2].

(3) Generalize the results presented in this paper to the infinite dimensional case.
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Conclusions

Considering our results, presented in this paper, we suggest that the concept of
exceptional family of elements associated to a continuous function opens a new
interesting research direction in the complementarity theory. The relation between
this concept and the topological degree is a sufficient argument to conclude that
the property to be without exceptional family of elements is a deep property of
continuous functions. Prabably, this property can be considered as a substantial
generalization of the concept of coercive function.
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